Student Life Library and Learning Services

Simultaneous Equations Study Development Quick Guide

Solving simultaneous equations

Direct substitution

If you have an equation that gives a value for one variable (or can be rearranged to give you that) you can directly sub it into the other equation. For example:

$$x = 4y + 2$$
$$\frac{x}{2} + 1 = y + 3$$

Since we have an expression for x, we can just sub it directly into the second equation:

$$\frac{4y+2}{2} + 1 = y + 3$$

Which becomes:

2y + 1 + 1 = y + 3

Which rearranges to give:

y = 1

and so

$$x = 4(1) + 2 = 6$$

Student Life

Library and Learning Services Simultaneous Equations Study Development Quick Guide

Addition and subtraction

We decide how to do this by looking at the coefficients of the variables. For example:

$$3s - 2 = 8t$$
$$s + 1 = 6t$$

We minus 3 \times the second equation from the first, to get:

$$3s - 2 - 3(s + 1) = 8t - 3(6t)$$

Which becomes:

3s - 3s - 2 - 3 = 8t - 18t

-5 = -10t

 $t = \frac{1}{2}$

Which simplifies to:

and so

Which gives us

$$3s - 2 = 8\left(\frac{1}{2}\right)$$
$$3s = 6$$
$$s = 2$$

Student Life

Library and Learning Services Simultaneous Equations Study Development Quick Guide

Matrix method

For the simultaneous equations

$$3p + 2 = 2q - 1$$
$$p + 7 = 4q$$

We rearrange to have the constants on one side and the variables on the other:

$$3p - 2q = -3$$
$$p - 4q = -7$$

We then set up a system of matrices in this format:

$$\begin{pmatrix} 3 & -2 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} -3 \\ -7 \end{pmatrix}$$

We then find an inverse for the 2x2 matrix- there are many ways to do this, see the factsheet on matrices for more information.

The inverse of $\begin{pmatrix} 3 & -2\\ 1 & -4 \end{pmatrix}$ is $\begin{pmatrix} \frac{4}{10} & \frac{-2}{10}\\ \frac{1}{10} & \frac{-3}{10} \end{pmatrix}$. We left-multiply both sides of the equation to get: $\begin{pmatrix} \frac{4}{10} & \frac{-2}{10}\\ \frac{1}{10} & \frac{-3}{10} \end{pmatrix} \begin{pmatrix} 3 & -2\\ 1 & -4 \end{pmatrix} \begin{pmatrix} p\\ q \end{pmatrix} = \begin{pmatrix} \frac{4}{10} & \frac{-2}{10}\\ \frac{1}{10} & \frac{-3}{10} \end{pmatrix} \begin{pmatrix} -3\\ -7 \end{pmatrix}$

Which simplifies to:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} \frac{1}{5} \\ \frac{9}{5} \\ \frac{1}{5} \end{pmatrix}$$

Which gives us

$$p = \frac{1}{5}$$
$$q = \frac{9}{5}$$

Library and Learning Services Study Development Email: studydevelopment@yorksj.ac.uk

Student Life

Library and Learning Services

'Wordy' problems (real-world questions)

In order to solve a 'wordy' problem, try the following steps:

- 1. Decide what the variables should be.
- 2. Set up your two equations using the information given.
- 3. Solve using your preferred method.
- 4. Remember, when writing your answers, you might need to put units in.

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the <u>Study Development tutorial and workshop webpage</u> or search 'YSJ study development tutorials.'
- Access our Study Success resources on the <u>Study Success webpage</u> or search 'YSJ study success.'