What is a basis?

(Informally) a basis of R^{n} is a set of vectors in R^{n} that you can make any vector in R^{n} out of by finding a linear combination of the basis vectors. For example,
$\binom{1}{0}$ and $\binom{0}{1}$ are a basis for R^{2} because we can write any vector in R^{2} as a linear combination of the vectors, as $\binom{a}{b}=a\binom{1}{0}+b\binom{0}{1}$.

Why find a basis?

As with most things we do in linear algebra, finding a basis is a great way to condense a lot of information into a much smaller package. Imagine listing out every vector in R^{3}, versus simply saying 'every vector in R^{3} can be written as a linear combination of $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.

Checking if a set of vectors is a basis

When we are given a set of vectors and asked 'is this set of vectors a basis in S ?' we are being asked to check two things:

- Are the vectors linearly independent?
- Do they span S ?

If the answer to both is yes, then we have a basis for S.

Finding a basis for R^{n}
Study Development Factsheet

Linear independence

A set of vectors being linearly independent means that we cannot form one of the vectors as a linear combination of the others. A linear combination of a set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ is $a_{1} v_{1}+$ $a_{2} v_{2}+\cdots+a_{n} v_{n}$ where $a_{1}, a_{2}, \ldots, a_{n}$ are scalars.
For example,
$\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}3 \\ -2 \\ 2\end{array}\right)$ are not linearly independent, since $\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)=3\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)-\left(\begin{array}{c}3 \\ -2 \\ 2\end{array}\right)$.
We can test for linear independence in a couple of different ways:

1. A set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent if the only solution to $a_{1} v_{1}+a_{2} v_{2}+$

$$
\cdots+a_{n} v_{n}=0 \text { is } a_{1}=a_{2}=\cdots=a_{n}=0
$$

For example, for the vectors $\binom{1}{2}$ and $\binom{3}{1}$, we find

$$
a\binom{1}{2}+b\binom{3}{1}=\binom{0}{0}
$$

(for scalars a and b). Multiplying out, we get

$$
\binom{a}{2 a}+\binom{3 b}{b}=\binom{0}{0}
$$

and so, we have
(1) $a+3 b=0$
(2) $2 a+b=0$

Solving these simultaneously gives us (2) (1): $-5 b=0$ and so, $b=0$. Giving (1): $a+0=0$, and so $a=0$. Therefore, the only solution we have is $a=b=0$, so the vectors are linearly independent.
2. The determinant of a matrix is 0 if and only if the columns are linearly dependent.

To use this method, we write the vectors as the columns of a matrix and then find the determinant.
For example, to test if $\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)$ are linearly independent, we find:

$$
\operatorname{det}\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 3 & 0 \\
2 & 4 & 2
\end{array}\right)=6 \neq 0
$$

Therefore, the vectors are linearly independent.

Spanning

When we say a set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ span S, we mean that we can find any vector v in S by writing it as $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=v$ for scalars $a_{1}, a_{2}, \ldots, a_{n}$.

There is a very useful result that ' n linearly independent vectors will span R^{n} ' (proof: see below in the method for showing independence and span in one step).

So, if you are testing whether your vectors span R^{n}, and you have n linearly independent vectors, we know that they span R^{n}.

Showing we have a basis in one step

We may rewrite $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=v$ as $\left(\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right) V=v$, where V is a matrix whose columns are $v_{1}, v_{2}, \ldots, v_{n}$. If V is invertible, we have

$$
\begin{gathered}
\left(\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right) V=v \\
\left(\begin{array}{llll}
a_{1} & a_{2} & \ldots & \left.a_{n}\right) V V^{-1}=v V^{-1} \\
\left(\begin{array}{lllll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right) I_{n}=v V^{-1} \\
\left(\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right)=v V^{-1}
\end{array}\right.
\end{gathered}
$$

Therefore, if V^{-1} exists, we know that there is always a solution for $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=v$, and so S is spanned by $v_{1}, v_{2}, \ldots, v_{n}$.
Note: if V is invertible, this also means $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent, so we have also shown that $v_{1}, v_{2}, \ldots, v_{n}$ is a basis in this one calculation.

We also know that a matrix is invertible if and only if its determinant is not 0 .
Therefore, to show that we have a basis:
Write the vectors as the columns of a matrix, find the determinant. If the determinant is 0 , we do not have a basis. If the determinant is not 0 , we have a basis.

For example, to test if the vectors $\left(\begin{array}{l}1 \\ 4 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)$ are a basis of R^{3}, we perform the following calculation:

$$
\operatorname{det}\left(\begin{array}{lll}
1 & 0 & 1 \\
4 & 2 & 3 \\
1 & 1 & 0
\end{array}\right)=-1 \neq 0
$$

Therefore, they are a basis of R^{3}.

Library and Learning Services

Study Development

YORK

Finding a basis for R^{n}

Study Development Factsheet

Finding a basis

Now that we know how to check if vectors are a basis, finding a basis is a pretty simple task. We know that we need to find the columns of an nxn matrix such that its determinant isn't zero.

For example, if we are asked to find a basis for R^{3} we can simply fill in the blanks of a 3×3 matrix. Start by choosing any vector in R^{3}. We'll call this $v_{1}=\left(\begin{array}{l}v_{1,1} \\ v_{1,2} \\ v_{1,3}\end{array}\right)$ Then, choose a second vector in R^{3} as long as this isn't a scalar multiple of your first vector it will work. We write this as $v_{2}=$ $\left(\begin{array}{l}v_{2,1} \\ v_{2,2} \\ v_{2,3}\end{array}\right)$ Next, we write

$$
\left(\begin{array}{lll}
v_{1,1} & v_{2,1} & v_{3,1} \\
v_{1,2} & v_{2,2} & v_{3,2} \\
v_{1,3} & v_{2,3} & v_{3,3}
\end{array}\right)
$$

We then find the determinant and choose values for $v_{3,1}, v_{3,2}$ and $v_{3,3}$ such that the determinant is not 0 .

If we are finding a basis for R^{n} with $n>3$, we have to check for linear independence each time we add a new vector past the second vector added.
Hint: there are vectors that we sometimes call the 'standard basis vectors'. These are vectors that have only one non-zero entry that is 1 . These are usually the easiest way to find a basis. For example, for R^{3}, the 'standard basis vectors' are $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. If you are unsure, try selecting the first two basis vectors in this format, and it should make it much easier to find a third vector.

Library and Learning Services
Study Development

Finding a basis for R^{n}
Study Development Factsheet

For example, find a basis for R^{4} :
First, we choose $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$ as one of the vectors. Since $\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$ is not a scalar multiple of our first vector, we choose this as our second vector. We select $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$ as a potential third vector, but we must first check it that these three vectors are linearly independent:
$a\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)+b\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)+c\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$ gives $\left(\begin{array}{l}a \\ b \\ c \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$, so we have $a=b=c=0$ as the only solution, and so they are linearly independent.

Finally, we set up:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & v_{4,1} \\
0 & 1 & 0 & v_{4,2} \\
0 & 0 & 1 & v_{4,3} \\
0 & 0 & 0 & v_{4,4}
\end{array}\right)
$$

We find the determinant:

$$
\operatorname{det}\left(\begin{array}{llll}
1 & 0 & 0 & v_{4,1} \\
0 & 1 & 0 & v_{4,2} \\
0 & 0 & 1 & v_{4,3} \\
0 & 0 & 0 & v_{4,4}
\end{array}\right)=1\left(1\left(v_{4,4}\right)\right)=v_{4,4}
$$

Therefore, we have that $v_{4,1}, v_{4,2}$ and $v_{4,3}$ can be any values in R that we'd like, and $v_{4,4}$ can be
anything in R except 0 . So, we could have a basis of $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 0 \\ 1\end{array}\right)$.

Finding a basis for R^{n}

Study Development Factsheet

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the Study Development tutorial and workshop webpage or search 'YSJ study development tutorials.'
- Access our Study Success resources on the Study Success webpage or search 'YSJ study success.'

Library and Learning Services
Study Development

