Example

Make A the subject of the equation:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos (A)
$$

Answer

We begin by adding $2 b c \cos (A)$ to both sides:

$$
a^{2}+2 b c \cos (A)=b^{2}+c^{2}-2 b c \cos (A)+2 b c \cos (A)
$$

and then simplify:

$$
a^{2}+2 b c \cos (A)=b^{2}+c^{2}
$$

We then minus a^{2} from both sides and simplify:

$$
2 b c \cos (A)=b^{2}+c^{2}-a^{2}
$$

We then divide both sides by $2 b c$:

$$
\frac{2 b c \cos (A)}{2 b c}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

and then simplify:

$$
\cos (A)=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

We then take $\cos ^{-1}$ of both sides:

$$
\cos ^{-1}(\cos (A))=\cos ^{-1}\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)
$$

and then simplify:

$$
A=\cos ^{-1}\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)
$$

Questions

1. Make distance the subject of the equation: speed $=\frac{\text { distance }}{\text { time }}$
2. Make H the subject of the equation: $\sin (\theta)=\frac{O}{H}$
3. Make v the subject of the equation: $E_{k}=\frac{1}{2} m v^{2}$
4. Make u the subject of the equation: $v^{2}-u^{2}=2 a s$
5. Make A the subject of the equation: $\frac{a}{\sin (A)}=\frac{b}{\sin (B)}$
6. Make y the subject of the equation: $x y-2 y=\alpha$
7. Make t the subject of the equation: $N=M e^{k t}$

Answers

1. Multiply both sides by time:
speed \times time $=\frac{\text { distance } \times \text { time }}{\text { time }}$
then simplify:
speed \times time $=$ distance
2. Multiply both sides by H :
$H \times \sin (\theta)=0$

Divide both sides by $\sin (\theta)$:
$H=\frac{O}{\sin (\theta)}$
3. Multiply both sides by 2 :
$2 E_{k}=m v^{2}$

Then divide both sides by m :
$\frac{2 E_{k}}{m}=v^{2}$

Finally, take the square root of both sides:

$$
\sqrt{\frac{2 E_{k}}{m}}=v
$$

4. Add u^{2} to both sides:

$$
v^{2}=2 a s+u^{2}
$$

Minus $2 a s$ from both sides:
$v^{2}-2 a s=u^{2}$

Finally, take the square root of both sides:
$\sqrt{v^{2}-2 a s}=u$
5. Multiply both sides by $\sin (A)$:
$a=\frac{b \sin (A)}{\sin (B)}$

Then multiply both sides by $\sin (B)$:
$a \sin (B)=b \sin (A)$

Divide both sides by b :
$\frac{a \sin (B)}{b}=\sin (A)$

Finally, take $\sin ^{-1}$ of both sides:
$\sin ^{-1}\left(\frac{a \sin (B)}{b}\right)=A$
6. Factorise the left-hand side to get
$y(x-2)=\alpha$

Then divide both sides by $x-2$:
$y=\frac{\alpha}{x-2}$
7. Divide both sides by M :
$\frac{N}{M}=e^{k t}$

Take logs of both sides:
$\log \left(\frac{N}{M}\right)=\log \left(e^{k t}\right)$

Then simplify:
$\log \left(\frac{N}{M}\right)=k t$

Divide both sides by k :
$\frac{1}{k} \log \left(\frac{N}{M}\right)=t$

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the Study Development tutorial and workshop webpage or search 'YSJ study development tutorials.'
- Access our Study Success resources on the Study Success webpage or search 'YSJ study success.'

Library and Learning Services
Study Development

