Simple differentiation

If $f(x)=a x^{n}$ where a and n are constants, then

$$
f^{\prime}(x)=(a \times n) x^{n-1}
$$

For a function of the form $f(x)=a x^{n}+b x^{m}+\cdots$ we simply differentiate each term from left to right to get:

$$
f^{\prime}(x)=(a \times n) x^{n-1}+(b \times m) x^{m-1}+\cdots
$$

The differential of a constant is 0 .

Common differentiation rules

$\frac{\mathrm{d} \sin (\mathrm{x})}{\mathrm{d} x}=\cos (x)$
$\frac{\mathrm{d} \cos (\mathrm{x})}{\mathrm{d} x}=-\sin (x)$
$\frac{\mathrm{d}(-\sin (x))}{\mathrm{d} x}=-\cos (x)$
$\frac{\mathrm{d}(-\cos (x))}{\mathrm{d} x}=\sin (x)$
$\frac{\mathrm{d} \tan (x)}{\mathrm{d} x}=\sec ^{2}(x)$
Differential of natural $\log : \frac{\mathrm{d} \log (f(x))}{\mathrm{d} x}=\frac{f^{\prime}(x)}{f(x)}$
$\frac{\mathrm{d} e^{f(x)}}{\mathrm{d} x}=f^{\prime}(x) e^{f(x)}$
The chain rule
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y(u)}{\mathrm{d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}$

The product rule

$\frac{\mathrm{d} f(x) g(x)}{\mathrm{d} x}=f(x) \frac{\mathrm{d} g(x)}{\mathrm{d} x}+g(x) \frac{\mathrm{d} f(x)}{\mathrm{d} x}$

The quotient rule

$$
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

Equation of a tangent

To find the equation of a tangent at a point on a function:

1. Differentiate the function. This gives you an expression for the gradient of the function.
2. Calculate the gradient using the expression from step 1 at the point you want the tangent at. Do this by plugging in the x value given.
3. Write a new expression of the form: $y=$ (gradient at the point) $x+c$.
4. Use the x and y values of the point given to calculate c.

Turning points

To find a turning point:

1. Differentiate the function.
2. Equate the differential to 0 and solve for x.
3. Substitute these x values into your original function to find the corresponding y values.

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the Study Development tutorial and workshop webpage or search 'YSJ study development tutorials.'
- Access our Study Success resources on the Study Success webpage or search 'YSJ study success.'

Library and Learning Services
Study Development

