What is the logarithm function?

How would you solve $4^{x}=64$ to get a value for x ?

Perhaps you have seen this calculation before, and so you know that the answer is $x=3$. Often, however, we are asked to solve functions that have less obvious solutions, such as finding y when $2^{y}=33,554,432$.

We could go through each power of 2 until we find the correct answer, but this is very time consuming, and in a lot of cases x or y will not be integers.

This is why we have a logarithm function.
In order to calculate c when $\mathrm{a}^{\mathrm{c}}=\mathrm{b}$, we use logs:
$\log _{\mathrm{a}}(\mathrm{b})=\mathrm{c}$.
So, in our earlier examples, we have that $\log _{4}(64)=3$, and $\log _{2}(33,554,432)=25$.

Calculating logs

We read the function $\log _{\mathrm{a}}(\mathrm{b})=\mathrm{c}$ as ' \log base a of b equals c '.
On a scientific or graphical calculator, there will often be three buttons to allow you to calculate logs. There is usually a $\log _{10}$ button, a $\log _{x}$ button, and a natural log button called \ln (more on this later).

In order to calculate a log, you can use a calculator, or simplify it using log laws.

YORK

Natural logs

The natural log function is the inverse of the exponential function. If we were to calculate x when $e^{x}=10$, we would use our log function and calculate $\log _{e}(10)=x$.

This function, 'log base e' is called the natural log function, and we write it as \ln. So, we would calculate $\log _{e}(10)=\ln (10)=x$.

Log laws

There are several rules that the logarithm function follows. It is worth learning these as you will likely be required to use them often.

- $\log _{a}(b)+\log _{a}(c)=\log _{a}(b \times c)$
- $\log _{a}(b)-\log _{a}(c)=\log _{a}\left(\frac{b}{c}\right)$
- $b \log _{a}(c)=\log _{a}\left(c^{b}\right)$
- $\log _{a}(a)=1$
- $\log _{a}(1)=0$
- $a^{\log _{a}(b)}=b$
- $\log _{a}\left(a^{b}\right)=b$
- $\ln \left(e^{x}\right)=x$

Examples

1. Simplify $\log _{2}(4)+\log _{2}(8)$.
2. Calculate $3 \log _{3}(1)-\log _{3}(3)$.
3. Calculate $\log _{7}(49)$.

Answers

1. $\log _{2}(4)+\log _{2}(8)=\log _{2}(4 \times 8)=\log _{2}(32)=5$.

Alternatively, $\log _{2}(4)+\log _{2}(8)=2+3=5$.
2. $3 \log _{3}(1)-\log _{3}(3)=\log _{3}\left(1^{3}\right)-\log _{3}(3)=\log _{3}(1)-\log _{3}(3)=\log _{3}\left(\frac{1}{3}\right)=-1$.

Alternatively, $3 \log _{3}(1)-\log _{3}(3)=3 \times 0-1=-1$.
3. $\log _{7}(49)=\log _{7}\left(7^{2}\right)=2$

Alternatively, $\log _{7}(49)=2$.

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the Study Development tutorial and workshop webpage or search 'YSJ study development tutorials.'
- Access our Study Success resources on the Study Success webpage or search 'YSJ study success.'

Library and Learning Services
Study Development

