Student Life Library and Learning Services

Logarithms Study Development Factsheet

What is the logarithm function?

How would you solve $4^x = 64$ to get a value for x?

Perhaps you have seen this calculation before, and so you know that the answer is x = 3. Often, however, we are asked to solve functions that have less obvious solutions, such as finding y when $2^{y} = 33,554,432$.

We could go through each power of 2 until we find the correct answer, but this is very time consuming, and in a lot of cases x or y will not be integers.

This is why we have a logarithm function.

In order to calculate c when $a^c = b$, we use logs:

$$log_{a}(b) = c.$$

So, in our earlier examples, we have that $log_4(64) = 3$, and $log_2(33,554,432) = 25$.

Calculating logs

We read the function $log_a(b) = c$ as 'log base a of b equals c'.

On a scientific or graphical calculator, there will often be three buttons to allow you to calculate logs. There is usually a log_{10} button, a log_x button, and a natural log button called ln (more on this later).

In order to calculate a log, you can use a calculator, or simplify it using log laws.

Student Life Library and Learning Services

Natural logs

The natural log function is the inverse of the exponential function. If we were to calculate x when $e^x = 10$, we would use our log function and calculate $log_e(10) = x$. This function, 'log base e' is called the natural log function, and we write it as ln. So, we would

calculate $log_e(10) = ln(10) = x$.

Student Life Library and Learning Services

Logarithms Study Development Factsheet

Log laws

There are several rules that the logarithm function follows. It is worth learning these as you will likely be required to use them often.

- $log_a(b) + log_a(c) = log_a(b \times c)$
- $\log_a(b) \log_a(c) = \log_a\left(\frac{b}{c}\right)$
- $b \log_a(c) = \log_a(c^b)$
- $log_a(a) = 1$
- $log_a(1) = 0$
- $a^{\log_a(b)} = b$
- $log_a(a^b) = b$
- $ln(e^x) = x$

Examples

- 1. Simplify $log_2(4) + log_2(8)$.
- 2. Calculate $3 \log_3(1) \log_3(3)$.
- 3. Calculate $log_7(49)$.

Answers

- 1. $log_2(4) + log_2(8) = log_2(4 \times 8) = log_2(32) = 5.$ Alternatively, $log_2(4) + log_2(8) = 2 + 3 = 5.$
- 2. $3 \log_3(1) \log_3(3) = \log_3(1^3) \log_3(3) = \log_3(1) \log_3(3) = \log_3\left(\frac{1}{3}\right) = -1.$ Alternatively, $3 \log_3(1) - \log_3(3) = 3 \times 0 - 1 = -1.$
- 3. $log_7(49) = log_7(7^2) = 2$ Alternatively, $log_7(49) = 2$.

Student Life Library and Learning Services

Logarithms Study Development Factsheet

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the <u>Study Development tutorial and workshop webpage</u> or search 'YSJ study development tutorials.'
- Access our Study Success resources on the <u>Study Success webpage</u> or search 'YSJ study success.'