Student Life Library and Learning Services

Example

Simplify the following: $\ln(12) - \ln(10)$

Answer

Using the log laws, we know that

 $\ln(12) - \ln(10) = \ln\left(\frac{12}{10}\right) = \ln\left(\frac{6}{5}\right) = \ln(1.2)$

Student Life

Library and Learning Services

Logarithms Study Development Worksheet

Questions

- 1. Evaluate:
 - i) $log_4(16)$
 - ii) $log_2(32)$
 - iii) $log_3\left(\frac{1}{3}\right)$
 - iv) *ln*(1)
 - v) *ln*(10)
 - vi) $log_1(5)$
 - vii) $log_2(5)$
 - viii) $log_9\left(\frac{1}{27}\right)$
- 2. Calculate y in each of the following:
 - i) $4^{y} = 64$ ii) $3^{y} = \frac{1}{3}$ iii) $2^{y} = 256$ iv) $1^{y} = 1$ v) $5^{y} = 1$ vi) $9^{y} = 0$ vii) $27^{y} = 3$

viii) $4^{y} = \frac{1}{8}$

Library and Learning Services Study Development Email: <u>studydevelopment@yorksj.ac.uk</u>

Student Life

Library and Learning Services

3. Simplify:

- i) $log_a(15) + log_a(2)$
- ii) ln(100) + ln(9) ln(18)
- iii) $log_2(1) + log_2(2)$
- iv) $ln(e^2) ln(1) + 2 ln(e^2)$
- v) 4 ln(2) 2 ln(4)
- 4. Find a value for *x* in each of the following:
 - i) $\log_x(25) = 2$
 - ii) $x \ln(e^3) = 9$
 - iii) $log_x\left(\frac{1}{9}\right) = -2$
 - iv) $ln(e^x) + ln(e^2) = 6$
 - v) $log_x(3) log_x(27) = -1$

Student Life

Library and Learning Services Logarithms Study Development Worksheet

Answers

- 1. Using log laws or a calculator, we find:
 - i) $log_4(16) = 2$
 - ii) $log_2(32) = 5$
 - iii) $log_3\left(\frac{1}{3}\right) = log_3(1) log_3(3) = 0 1 = -1.$

Alternatively, you may already know that $3^{-1} = \frac{1}{3}$, in which case you do not need to separate the logs out.

- iv) ln(1) = 0
- v) ln(10) = 2.303
- vi) $log_1(5)$ does not exist. There exists no x such that $1^x = 5$.
- vii) $log_2(5) = 2.322$ (this is done using a calculator).

viii)
$$log_9\left(\frac{1}{27}\right) = log_9(1) - log_9(27) = 0 - log_9(3^3) = -3 \log_9(3) = -3 \left(\frac{1}{2}\right) = \frac{-3}{2}$$

- 2. By using the log function, we can calculate the answers:
 - i) $4^y = 64$. Therefore, we calculate $y = log_4(64) = 3$.

ii)
$$y = log_3\left(\frac{1}{3}\right) = -1$$

iii)
$$y = log_2(256) = 8$$

- iv) $y = log_1(1) = 1$ (or any value).
- v) $y = log_5(1) = 0$
- vi) $y = log_9(0)$. Since $log_9(0)$ does not exist, there is no possible y that solves this equation.

vii)
$$y = log_{27}(3) = \frac{1}{3}$$
.

viii)
$$y = log_4\left(\frac{1}{8}\right) = log_4(1) - log_4(8) = 0 - \frac{3}{2} = \frac{-3}{2}$$
.

Student Life

Library and Learning Services Logarithms Study Development Worksheet

3. Using log laws, we simplify the expressions.

- i) $log_a(15) + log_a(2) = log_a(15 \times 2) = log_a(30).$
- ii) $ln(100) + ln(9) ln(18) = ln(100 \times 9) ln(18) =$
 - $ln(900) ln(18) = ln\left(\frac{900}{18}\right) = ln(50) \ (= 3.912).$
- iii) $log_2(1) + log_2(2) = 0 + 1 = 1.$
- iv) $ln(e^2) ln(1) + 2 ln(e^2) = 2 0 + ln((e^2)^2) = 2 + ln(e^4) = 2 + 4 = 6.$
- v) $4 \ln(2) 2 \ln(4) = \ln(2^4) \ln(4^2) = \ln(16) \ln(16) = \ln\left(\frac{16}{16}\right) = \ln(1) = 0.$
- 4. We rearrange the equations and then find a value for *x*:
 - i) $log_x(25) = 2$ rearranged gives: $x^2 = 25$, which means that $x = \sqrt{25} = \pm 5$.
 - ii) $x \ln(e^3) = 9$ simplified gives 3x = 9, which means that $x = \frac{9}{3} = 3$.
 - iii) $log_x\left(\frac{1}{9}\right) = -2$ is the same as $x^{-2} = \frac{1}{9}$, and so $\frac{1}{x^2} = \frac{1}{9}$. This gives us $x^2 = 9$, and so $x = \pm 3$.
 - iv) $\ln(e^x) + \ln(e^2) = x + 2 = 6$, and so x = 6 2 = 4.
 - v) $log_x(3) log_x(27) = log_x\left(\frac{3}{27}\right) = log_x\left(\frac{1}{3}\right) = -1$, which gives us $x^{-1} = \frac{1}{x} = \frac{1}{3}$, and therefore, x = 3.

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the <u>Study Development tutorial and workshop webpage</u> or search 'YSJ study development tutorials.'
- Access our Study Success resources on the <u>Study Success webpage</u> or search 'YSJ study success.'