## Example

1. Convert $z=3+4 i$ into Polar form.
2. Convert $z=5 e^{i \frac{\pi}{2}}$ into Cartesian form.

## Answer

1. We want to write $z=x+i y$ in the form $z=r e^{i \theta}$, where $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\tan ^{-1}\left(\frac{y}{x}\right)$.

We first find $r$ :
$r=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5$
Note: -5 is also an answer to $\sqrt{25}$, however we usually write $r$ to be positive as it is representing a length.
Then, we find $\theta$ :
$\theta=\tan ^{-1}\left(\frac{4}{3}\right)=0.92729^{c}$
Note: We always work in Radians when writing complex numbers in Polar form.
Now, we plug in these values to get: $z=r e^{i \theta}=5 e^{0.92729 i}$.
2.


The Cartesian form ( $z=x+i y$ ) is found using the formulae:
$x=r \cos (\theta)$
$y=r \sin (\theta)$

So, we have $x=5 \cos \left(\frac{\pi}{2}\right)=0$, and $y=5 \sin \left(\frac{\pi}{2}\right)=5$, which means that we have $z=5 i$.

## Questions

1. Convert the following to Polar form:
a. $z=3+i$
b. $z=4+4 i$
c. $z=6+2 \sqrt{3} i$
2. Convert the following to Cartesian form:
a. $z=4 e^{\frac{i \pi}{3}}$
b. $z=2 e^{\frac{i \pi}{4}}$
c. $z=\sqrt{3} e^{\frac{i 4 \pi}{3}}$
3. Find the modulus and the argument of the following:
a. $z=5 e^{2 i}$
b. $z=\sqrt{3}+i$
c. $z=9+9 i$
d. $z=3+5 i$.
4. Calculate the following:
a. $(2+2 i)(7+4 i)$
b. $(6+6 i)^{10}$
c. $(4 \sqrt{3}+4 i)^{5}$
d. $(10 \sqrt{3}+30 i)^{7}$

## Answers

1. We convert the values from the form $z=x+i y$ into the form $z=r e^{i \theta}$ using $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\tan ^{-1}\left(\frac{y}{x}\right)$.
a. $r=\sqrt{3^{2}+1^{2}}=\sqrt{10}$
$\theta=\tan ^{-1}\left(\frac{1}{3}\right)=0.32175^{c}$
Therefore, $z=\sqrt{10} e^{0.32175 i}$.
b. $r=\sqrt{4^{2}+4^{2}}=\sqrt{32}=4 \sqrt{2}$
$\theta=\tan ^{-1}\left(\frac{4}{4}\right)=\frac{\pi}{4}$
Therefore, $z=4 \sqrt{2} e^{\frac{i \pi}{4}}$.
c. $r=\sqrt{(2 \sqrt{3})^{2}+6^{2}}=\sqrt{12+36}=\sqrt{48}=4 \sqrt{3}$

$$
\theta=\tan ^{-1}\left(\frac{2 \sqrt{3}}{6}\right)=\frac{\pi}{6}
$$

Therefore, $z=4 \sqrt{3} e^{\frac{i \pi}{6}}$.
2. We convert the values from the form $z=r e^{i \theta}$ into the form $z=x+i y$ using $x=r \cos (\theta)$ and $y=r \sin (\theta)$.
a. $y=4 \sin \left(\frac{\pi}{3}\right)=2 \sqrt{3}$ and $x=4 \cos \left(\frac{\pi}{3}\right)=2$, so we have that $z=2+2 \sqrt{3}$.
b. $y=2 \sin \left(\frac{\pi}{4}\right)=\sqrt{2}$ and $x=2 \cos \left(\frac{\pi}{4}\right)=\sqrt{2}$, so we have that $z=\sqrt{2}+\sqrt{2} i$.
c. $\mathrm{y}=\sqrt{3} \sin \left(\frac{4 \pi}{3}\right)=\frac{-\sqrt{3}}{2}$ and $\mathrm{x}=\sqrt{3} \cos \left(\frac{4 \pi}{3}\right)=\frac{-1}{2}$, so we have that $z=\frac{-1}{2}-\frac{\sqrt{3} i}{2}$.
3. We find the modulus and argument of $z$ using $\bmod (z)=\sqrt{x^{2}+y^{2}}=\mathrm{r}$ and $\arg (z)=$ $\tan ^{-1}\left(\frac{y}{x}\right)=\theta$.
a. $\bmod (z)=r=5, \arg (z)=\theta=2^{c}$.
b. $\bmod (z)=\sqrt{(\sqrt{3})^{2}+1^{2}}=\sqrt{4}=2, \arg (z)=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi^{c}}{6}$.
c. $\bmod (z)=\sqrt{9^{2}+9^{2}}=9 \sqrt{2}, \arg (z)=\tan ^{-1}\left(\frac{9}{9}\right)=\frac{\pi^{c}}{4}$.
d. $\bmod (z)=\sqrt{3^{2}+5^{2}}=\sqrt{36}=6, \arg (z)=\tan ^{-1}\left(\frac{5}{3}\right)=1.03038^{c}$.
4. When it would be time consuming to multiply many complex numbers together, we can convert them into Polar form and then perform the power operator.
a. Using the FOIL method: $(2+2 i)(7+4 i)=14+8 i+14 i+8 i^{2}$. Since $i=\sqrt{-1}$, we know that $i^{2}=-1$, so we have $14+8 i+14 i+8 i^{2}=14+22 i-8=6+22 i$.
b. We first convert $6+6 i$ into Polar form:
$r=\sqrt{6^{2}+6^{2}}=6 \sqrt{2}$, and $\theta=\tan ^{-1}\left(\frac{6}{6}\right)=\frac{\pi}{4}$, so $6+6 i=6 \sqrt{2} e^{\frac{i \pi}{4}}$.
We then find $(6+6 i)^{10}=\left(6 \sqrt{2} \mathrm{e}^{\frac{\mathrm{i} \pi}{4}}\right)^{10}=(6 \sqrt{2})^{10} \mathrm{e}^{\frac{\mathrm{i} 10 \pi}{4}}=1934917632 \mathrm{e}^{\frac{\mathrm{i} 5 \pi}{2}}$.
c. We convert $4 \sqrt{3}+4 i$ into Polar form:
$r=\sqrt{(4 \sqrt{3})^{2}+4^{2}}=\sqrt{64}=8$, and $\theta=\tan ^{-1}\left(\frac{4}{4 \sqrt{3}}\right)=\frac{\pi}{6}$, so $4 \sqrt{3}+4 i=8 e^{\frac{i \pi}{6}}$.
We then find $\left(8 e^{\frac{i \pi}{6}}\right)^{5}=8^{5} e^{\frac{i 5 \pi}{6}}=32768 e^{\frac{i 5 \pi}{6}}$.

YORK
ST JOHN
UNIVERSITY
Student Life
Library and
Learning Services
d. We convert $10 \sqrt{3}+30 i$ into Polar form:
$r=\sqrt{(10 \sqrt{3})^{2}+30^{2}}=20 \sqrt{3}$, and $\theta=\tan ^{-1}\left(\frac{30}{10 \sqrt{3}}\right)=\frac{\pi}{3}$, so $10 \sqrt{3}+30 i=20 \sqrt{3} e^{\frac{i \pi}{3}}$.
We then find $\left(20 \sqrt{3} e^{\frac{i \pi}{3}}\right)^{7}=(20 \sqrt{3})^{7} e^{\frac{i 7 \pi}{3}}=59859675909.6 e^{\frac{i 7 \pi}{3}}$.

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the Study Development tutorial and workshop webpage or search 'YSJ study development tutorials.'
- Access our Study Success resources on the Study Success webpage or search 'YSJ study success.'

Library and Learning Services
Study Development

