Complex number arithmetic

There are several rules for manipulating complex numbers.
Addition:

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

Subtraction:

$$
(a+b i)-(c+d i)=(a+c)+(b-d) i
$$

Multiplication:

$$
(a+b i) \times(c+d i)=a c-b d+(a d+b c) i
$$

Division:

$$
\frac{a+b i}{c+d i}=\frac{-a c-b d}{-c^{2}-d^{2}}+\frac{(a d-b c) i}{-c^{2}-d^{2}}
$$

Polar form

Modulus

The 'modulus', r, is the length of the line between z and the origin. We calculate this using
Pythagoras's Theorem: $(|z|)^{2}=x^{2}+y^{2}$, so therefore $|z|=r=\sqrt{x^{2}+y^{2}}$.

Argument and quadrant adjustments

The 'argument' $\arg (z)$ is the angle θ between z and the real axis. We calculate this using the tangent function: $\tan (\alpha)=\frac{y}{x}$, and so $\alpha=\tan ^{-1}\left(\frac{y}{x}\right)$. We then adjust α based on the quadrant that z is in to find the argument θ.

Quadrant	x and y values	$\boldsymbol{\theta}$ from $\boldsymbol{\alpha}$
$1^{\text {st }}$	$\mathrm{x}>0, \mathrm{y}>0$	$\theta=\alpha$
$2^{\text {nd }}$	$\mathrm{x}<0, \mathrm{y}>0$	$\theta=\pi-\alpha$
$3^{\text {rd }}$	$\mathrm{x}<0, \mathrm{y}<0$	$\theta=\alpha-\pi$
$4^{\text {th }}$	$\mathrm{x}>0, \mathrm{y}<0$	$\theta=-\alpha$

Library and Learning Services
Study Development

Converting from polar form to Cartesian

If we are given a complex number in the form $z=r(\cos (\theta)+i \sin (\theta))$ or $z=r e^{i \theta}$ and we want to put it into the form $z=x+y i$ we can follow these steps:

1. Calculate $x=r \cos (\theta)$.
2. Calculate $y=r \sin (\theta)$.
3. Write the number in the form $z=x+y i$.

Converting from Cartesian to polar form

If we are given a complex number of the form $z=x+y i$, and we would like it in the form $z=$ $r(\cos (\theta)+i \sin (\theta))$ or $z=r e^{i \theta}$, we do the following:

1. Calculate $r=\sqrt{x^{2}+y^{2}}$.
2. Calculate $\alpha=\tan ^{-1}\left(\frac{y}{x}\right)$.
3. Adjust α based on the quadrant of z to get θ.
4. Write the number in the form $z=r(\cos (\theta)+i \sin (\theta))$ or $z=r e^{i \theta}$.

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the Study Development tutorial and workshop webpage or search 'YSJ study development tutorials.'
- Access our Study Success resources on the Study Success webpage or search 'YSJ study success.'

Library and Learning Services
Study Development

