Est. 1841 YORK ST JOHN UNIVERSITY

Student Life

Library and Learning Services Complex numbers Study Development Quick Guide

Complex number arithmetic

There are several rules for manipulating complex numbers.

Addition:

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

Subtraction:

$$(a + bi) - (c + di) = (a + c) + (b - d)i$$

Multiplication:

$$(a+bi) \times (c+di) = ac - bd + (ad + bc)i$$

Division:

$$\frac{a+bi}{c+di} = \frac{-ac-bd}{-c^2-d^2} + \frac{(ad-bc)i}{-c^2-d^2}$$

Polar form

Modulus

The 'modulus', r, is the length of the line between z and the origin. We calculate this using

Pythagoras's Theorem: $(|z|)^2 = x^2 + y^2$, so therefore $|z| = r = \sqrt{x^2 + y^2}$.

Argument and quadrant adjustments

The 'argument' arg(z) is the angle θ between z and the real axis. We calculate this using the tangent function: $tan(\alpha) = \frac{y}{x}$, and so $\alpha = tan^{-1}\left(\frac{y}{x}\right)$. We then adjust α based on the quadrant that z is in to find the argument θ .

Quadrant	x and y values	θ from α
1 st	x > 0, y > 0	$\theta = \alpha$
2 nd	x < 0, y > 0	$\theta = \pi - \alpha$
3 rd	x < 0, y < 0	$\theta = \alpha - \pi$
4 th	x > 0, y < 0	$\theta = -\alpha$

YORK ST JOHN UNIVERSITY

Student Life Library and Learning Services Complex numbers Study Development Quick Guide

Converting from polar form to Cartesian

If we are given a complex number in the form $z = r(cos(\theta) + i sin(\theta))$ or $z = re^{i\theta}$ and we want to put it into the form z = x + yi we can follow these steps:

- 1. Calculate $x = r \cos(\theta)$.
- 2. Calculate $y = r \sin(\theta)$.
- 3. Write the number in the form z = x + yi.

Converting from Cartesian to polar form

If we are given a complex number of the form z = x + yi, and we would like it in the form $z = r(cos(\theta) + i sin(\theta))$ or $z = re^{i\theta}$, we do the following:

- 1. Calculate $r = \sqrt{x^2 + y^2}$.
- 2. Calculate $\alpha = tan^{-1}\left(\frac{y}{r}\right)$.
- 3. Adjust α based on the quadrant of z to get θ .
- 4. Write the number in the form $z = r(cos(\theta) + i sin(\theta))$ or $z = re^{i\theta}$.

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the <u>Study Development tutorial and workshop webpage</u> or search 'YSJ study development tutorials.'
- Access our Study Success resources on the <u>Study Success webpage</u> or search 'YSJ study success.'