YORK

Rationalising the denominator and making the denominator real
 Study Development Factsheet

Rationalising the denominator

An irrational number is (informally) a number that we cannot write as a fraction with an integer numerator and denominator. For example, $\sqrt{2}$ is irrational.

For a number in the form ' $a+y \sqrt{b}$ ' where \sqrt{b} is irrational, we call ' a ' the 'rational part' and ' $y \sqrt{b}$ ' the 'irrational part'.
In order to rationalise the denominator of a fraction that is in the form ' $a+y \sqrt{b^{\prime}}$, we use the following steps:

1. Take the irrational part of the denominator, and subtract the rational part. Call this value ' c '.

Eg) For the fraction $\frac{1}{2+\sqrt{7}}$ we would get $c=\sqrt{7}-2$.
2. Multiply the fraction by $\frac{\mathrm{C}}{\mathrm{C}}$.

$$
\text { Eg) } \frac{1}{2+\sqrt{7}}=\frac{1}{2+\sqrt{7}} \times \frac{\sqrt{7}-2}{\sqrt{7}-2}=\frac{1(\sqrt{7}-2)}{(2+\sqrt{7})(\sqrt{7}-2)}=\frac{\sqrt{7}-2}{2 \sqrt{7}-2^{2}+(\sqrt{7})^{2}-2 \sqrt{7}} .
$$

Note: We are allowed to do this because $\frac{c}{c}=1$, and multiplying anything by 1 does not change its value.
3. Tidy up the numerator and denominator.

Eg) $\frac{\sqrt{7}-2}{2 \sqrt{7}-2^{2}+(\sqrt{7})^{2}-2 \sqrt{7}}=\frac{\sqrt{7}-2}{-4+7}=\frac{\sqrt{7}-2}{3}$.
4. Simplify the fraction, if you can.

Eg) For a fraction such as $\frac{6+3 \sqrt{2}}{3}$ we would simplify to $2+\sqrt{2}$.

Rationalising the denominator and making the denominator real
 Study Development Factsheet

5. Change the format, if this is needed.

Eg) If we were asked to write $\frac{1}{2+\sqrt{7}}$ in the form $a+y \sqrt{b}$, we would rationalise the denominator to give us $\frac{\sqrt{7}-2}{3}$, and then write this as $\frac{-2}{3}+\frac{\sqrt{7}}{3}$.

Note

$\sqrt{\mathrm{a}} \times \sqrt{\mathrm{a}}=(\sqrt{\mathrm{a}})^{2}=\mathrm{a}$.

Making the denominator real

This process is largely the same as rationalising the denominator.

An imaginary number is (informally) a number that has $\sqrt{-1}$ as a factor. We write $\sqrt{-1}$ as i. A complex number is (informally) a number that has a real part and an imaginary part. For example, $3+2 \mathrm{i}$ is a complex number.

For a number in the form 'a + bi' where $\mathrm{i}=\sqrt{-1}$, we call 'a' the 'real part' and 'bi' the 'imaginary part'.

In order to make the denominator of a fraction that is in the form ' $a+b i$ ' real, we use the following steps:

1. Take the imaginary part of the denominator, and subtract the real part. Call this value ' c '. Eg) For the fraction $\frac{3}{1+2 i}$ we would get $c=2 i-1$.
2. Multiply the fraction by $\frac{\mathrm{C}}{\mathrm{C}}$.

Eg) $\frac{3}{1+2 i} \times \frac{2 i-1}{2 i-1}=\frac{3(2 i-1)}{(1+2 i)(2 i-1)}=\frac{6 i-3}{2 i-1+(2 i)^{2}-2 i}$

Note: Again, we are allowed to do this because $\frac{c}{c}=1$, and multiplying anything by 1 does not change its value.
3. Tidy up the numerator and denominator.

$$
\text { Eg) } \frac{6 i-3}{2 i-1+(2 i)^{2}-2 i}=\frac{6 i-3}{-1+4 i^{2}}=\frac{6 i-3}{-1-4}=\frac{6 i-3}{-5} .
$$

Library and Learning Services

Study Development
4. Simplify the fraction, if you can.

Eg) $\frac{6 i-3}{-5}=\frac{3-6 i}{5}$.
5. Change the format, if this is needed.

Eg) If we were asked to write $\frac{3}{1+2 i}$ in the form $a+b i$, we would make the denominator real to give us $\frac{3-6 i}{5}$, and then write this as $\frac{3}{5}-\frac{6 i}{5}$.

Note

Since $i=\sqrt{-1}$, we need to remember that:

$$
\begin{gathered}
i=\sqrt{-1} \\
i^{2}=(\sqrt{-1})^{2}=-1 \\
i^{3}=(\sqrt{-1})(\sqrt{-1})^{2}=(\sqrt{-1})(-1)=-i \\
i^{4}=(\sqrt{-1})^{2}(\sqrt{-1})^{2}=(-1)(-1)=1 \\
i^{5}=i^{4} \times i=1 \times i=i
\end{gathered}
$$

Which, without the calculation steps is:

$$
\begin{gathered}
i=i \\
i^{2}=-1 \\
i^{3}=-i \\
i^{4}=1 \\
i^{5}=i
\end{gathered}
$$

Rationalising the denominator and making the denominator real

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the Study Development tutorial and workshop webpage or search 'YSJ study development tutorials.'
- Access our Study Success resources on the Study Success webpage or search 'YSJ study success.'

Library and Learning Services
Study Development

