YORK ST JOHN UNIVERSITY

Student Life Library and Learning Services

Rationalising the denominator and making the denominator real

Study Development Factsheet

Rationalising the denominator

An irrational number is (informally) a number that we cannot write as a fraction with an integer numerator and denominator. For example, $\sqrt{2}$ is irrational.

For a number in the form 'a + $y\sqrt{b}$ ' where \sqrt{b} is irrational, we call 'a' the 'rational part' and ' $y\sqrt{b}$ ' the 'irrational part'.

In order to rationalise the denominator of a fraction that is in the form 'a + $y\sqrt{b}$ ', we use the following steps:

1. Take the irrational part of the denominator, and subtract the rational part. Call this value 'c'.

Eg) For the fraction $\frac{1}{2 + \sqrt{7}}$ we would get c = $\sqrt{7}$ - 2.

2. Multiply the fraction by $\frac{c}{c}$.

$$\mathsf{Eg}(\frac{1}{2+\sqrt{7}}) = \frac{1}{2+\sqrt{7}} \times \frac{\sqrt{7}-2}{\sqrt{7}-2} = \frac{1(\sqrt{7}-2)}{(2+\sqrt{7})(\sqrt{7}-2)} = \frac{\sqrt{7}-2}{2\sqrt{7}-2^2+(\sqrt{7})^2-2\sqrt{7}}.$$

Note: We are allowed to do this because $\frac{c}{c} = 1$, and multiplying anything by 1 does not change its value.

3. Tidy up the numerator and denominator.

Eg)
$$\frac{\sqrt{7} \cdot 2}{2\sqrt{7} \cdot 2^2 + (\sqrt{7})^2 \cdot 2\sqrt{7}} = \frac{\sqrt{7} \cdot 2}{-4 + 7} = \frac{\sqrt{7} \cdot 2}{3}.$$

4. Simplify the fraction, if you can.

Eg) For a fraction such as
$$\frac{6+3\sqrt{2}}{3}$$
 we would simplify to $2 + \sqrt{2}$.

Library and Learning Services Study Development Email: studydevelopment@yorksj.ac.uk

Est. | YORK 1841 | ST JOHN | UNIVERSITY

YORK ST JOHN UNIVERSITY

Student Life

Library and Learning Services

Rationalising the denominator and making the denominator real

Study Development Factsheet

5. Change the format, if this is needed.

Eg) If we were asked to write $\frac{1}{2+\sqrt{7}}$ in the form a + y \sqrt{b} , we would rationalise the

denominator to give us $\frac{\sqrt{7}-2}{3}$, and then write this as $\frac{-2}{3} + \frac{\sqrt{7}}{3}$.

Note

 $\sqrt{a} \times \sqrt{a} = (\sqrt{a})^2 = a.$

YORK ST JOHN UNIVERSITY

Student Life Library and Learning Services

Rationalising the denominator and making the denominator real

Study Development Factsheet

Making the denominator real

This process is largely the same as rationalising the denominator.

An imaginary number is (informally) a number that has $\sqrt{-1}$ as a factor. We write $\sqrt{-1}$ as i. A complex number is (informally) a number that has a real part and an imaginary part. For example, 3 + 2i is a complex number.

For a number in the form 'a + bi' where i = $\sqrt{-1}$, we call 'a' the 'real part' and 'bi' the 'imaginary part'.

In order to make the denominator of a fraction that is in the form 'a + bi' real, we use the following steps:

- 1. Take the imaginary part of the denominator, and subtract the real part. Call this value 'c'. Eg) For the fraction $\frac{3}{1+2i}$ we would get c = 2i - 1.
- 2. Multiply the fraction by $\frac{c}{c}$.

Eg)
$$\frac{3}{1+2i} \times \frac{2i-1}{2i-1} = \frac{3(2i-1)}{(1+2i)(2i-1)} = \frac{6i-3}{2i-1+(2i)^2-2i}$$

Note: Again, we are allowed to do this because $\frac{c}{c} = 1$, and multiplying anything by 1 does not change its value.

3. Tidy up the numerator and denominator.

Eg)
$$\frac{6i-3}{2i-1+(2i)^2-2i} = \frac{6i-3}{-1+4i^2} = \frac{6i-3}{-1-4} = \frac{6i-3}{-5}.$$

Library and Learning Services Study Development Email: studydevelopment@yorksj.ac.uk

YORK ST JOHN UNIVERSITY

Student Life

Library and Learning Services

Rationalising the denominator and making the denominator real

Study Development Factsheet

4. Simplify the fraction, if you can.

Eg)
$$\frac{6i-3}{-5} = \frac{3-6i}{5}$$
.

5. Change the format, if this is needed.

Eg) If we were asked to write $\frac{3}{1+2i}$ in the form a + bi, we would make the denominator real to give us $\frac{3-6i}{5}$, and then write this as $\frac{3}{5} - \frac{6i}{5}$.

Note

Since $i = \sqrt{-1}$, we need to remember that:

$$i = \sqrt{-1}$$

$$i^{2} = (\sqrt{-1})^{2} = -1$$

$$i^{3} = (\sqrt{-1})(\sqrt{-1})^{2} = (\sqrt{-1})(-1) = -i$$

$$i^{4} = (\sqrt{-1})^{2}(\sqrt{-1})^{2} = (-1)(-1) = 1$$

$$i^{5} = i^{4} \times i = 1 \times i = i$$

Which, without the calculation steps is:

```
i = ii^{2} = -1i^{3} = -ii^{4} = 1i^{5} = i
```

YORK ST JOHN UNIVERSITY

Student Life

Library and Learning Services

Rationalising the denominator and making the denominator real

Study Development Factsheet

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the <u>Study Development tutorial and workshop webpage</u> or search 'YSJ study development tutorials.'
- Access our Study Success resources on the <u>Study Success webpage</u> or search 'YSJ study success.'