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Eigenvectors and Eigenvalues

Study Development Worksheet

Questions

1. Find the characteristic equations of the following matrices:

a. Pz(é g)

1 0 3
d. s=[o0 -1 o9
1 0 -1
10 0 2
(13 0 o
e T=ly 2 _1 2
00 0 3

For this question (and all matrices above dimension 3) most people would use an
online solver. This question is thrown in for people who want a challenge, but you
are welcome to use it just to practice using an online eigenvector and eigenvalue
finder.

2. Using your answers to question 1, find the eigenvalues of the matrices:
a. P
b. @
c. R
d. S
e. T

3. Find an eigenvector corresponding to each of the eigenvalues of the matrices:
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9 a. P

. Q

b

C. R
d. S
e.T

Answers
1. Find the characteristic equations of the following matrices:
To find the characteristic equation of an n-dimensional matrix A, we find det(4 — AI,) = 0:

« aa((; )26 D)=er(G D-G )

1-1 3-0\_ 1—-X 3 \_/q_ N

det(z_o z_x)—det( 2 2_)\)—(1 NE2-)-03)®2)
=2-A-22+2%2-6
=12-31-4=0

b. 24+4A4+4=0

-2 0 0 1 0 0
C. det 0 4 —-1|-A{0 1 0]]=
0 0 -1 0 0 1

-2 0 0 A 0 O
det 0 4 -1|]—({0 A O) =
0 0 -1 0 0 A
A

-2 - 0 0
det 0 4—-2 -1 |=
0 0 -1-A
(—2-2D@-)N(-1-2)=0
You can leave it like this (since it's already factorised, which will help with

question 2c, or if you expand and simplify this you'll get —A3 + A% + 101 + 8 = 0.

d 23 —-2A24+424+4=0
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1 0 0 2 1 0 0 O
1 3 0 0 0 1 0 0})])_
e det\ oy 5 1 2] Mo 01 0|7
0 0 0 3 0 0 0 1
1 0 0 2 A 0 0 O
det1300_0/100:
0 2 -1 2 0 0 4 0
\0003 0 0 0 2
1-2 0 0 2
1 3—-A2 0 0 \_
det{ 2 —1-12 2 |7
0 0 0 3—-A

1-0DB-MV(1-HB -1 =
A-2DB-D?*(-1-21)=0
You can leave it in this format since it's already factorised, which will help with 2e,
or you can expand and simplify to get:
AM—6A+822+610—9=0

2. Using your answers to question 1, find the eigenvalues of the matrices:

a. To find the eigenvalues, we solve the characteristic equation of the matrix.
—4 — 31 + A? = 0 factorises to give (A —4)(A + 1) = 0, and so the

solutions/eigenvalues are A; = 4 and A, = —1.

b. 2+42+4=QA+2)(A+2)=0
A=-2

c. A+D(=A+4)(A+2)=0
11:_1,12:4’,13:_2

d 2B-22+4aA+4=Q+D(2A+2)A+2)
11=_1,12=2,13=—2
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)\1:1, }\2:_1,)\3:3

3. Find an eigenvector of the matrices:
a. To find an eigenvector corresponding each of the eigenvalues, we solve Px = Ax for

each A.

(2 26)=20)

(x+3y)_(/1x)
2x+2y)  \Ay

If we write and these as simultaneous equations, we get

Which gives

x + 3y = Ax
2x + 2y = Ay
For A, = 4:
x + 3y = 4x
2x + 2y = 4y
Which both simplify to give
xX=Yy

So, an eigenvector corresponding to 4, = 4 could be any scalar multiple of (1)

For A, = —1, we have
x+3y=—x
2x+2y = -y
Which we rearrange to get
3y = —-2x

So, an eigenvector corresponding to 4, = —1 could be any scalar multiple of

(%)

b. Qx =2Xx
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(—3x - y) _ (—Zx)
x—y ) \=2y
Therefore, an eigenvector of Q is any scalar multiple of (_11)

c. We find each solution to Rx = Ax:

(o s 2)0)=0)

We multiply this out to get:
—2x Ax
—-Z Az
For A, = —1:

—2x = —x, which implies that x = 0
4y — z = —y, which implies that 5y = z

—z = —z, so we choose z = 1, which gives y = g =

1
5
Therefore, an eigenvector of R which corresponds to 4, = —1 is any scalar

0
multiple of

= Ul =

For A, = 4.

—2x = 4x, which implies that x = 0

4y — z = 4y, which implies that z = 0

—z = 4z, which has already been solved by z = 0

This means that y can take any real value, so an eigenvector of R

0
corresponding to A, = 4 is any scalar multiple of (1)
0

Finally, for 1; = —2:
—2x = —2x,S0x =Xx

4y — z = =2y, which implies that 6y = z
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—z = —2z, which implies that z = 0, which further implies that y = 0 since

6y =z

1
So, an eigenvector of R corresponding to A1; = —2 is any scalar multiple of (0)

@3 2)6)-0)

d. Sx =Ax

x + 3z Ax
(—y + 9Z> = ()ly)
X—Zz Az

For 4, = —1:
x + 3z = —x, which rearranges to get 2x = —3z
—y + 9z = —y, which implies that z = 0, which further implies that x = 0

x — z = —z, which is solved by the above x = z = 0.

0
So, an eigenvector of S corresponding to 4; = —1 is any scalar multiple of (1)
0

For 4, = 2:

x + 3z = 2x, which rearrangesto 3z = x

—y + 9z = 2y, which rearranges to 9z = 3y, so 3z = y, which implies that 3z =
X=Yy,S0x =Yy

x — z = 2z, which rearranges to x = 3z

3
So, an eigenvector of S corresponding to 1, = 2 is any scalar multiple of (3)
1

For A; = —2:
x + 3z = —2x, which rearranges to 3z = —3x, S0z = —x
—y + 9z = -2y, which rearranges to 9z = —y

x —z = —2z, which rearranges to x = —z

-1
So, an eigenvector of S corresponding to A; = —2 is any scalar multiple of (—9).
1

e. Tx = Ax:
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1 3 0 0}fx)_ Al *
0 2 -1 2/J\Yy y
0 0 0 3/ ‘z z
w+ 2z Aw
w + 3x _ | Ax
2x—y+2z Ay
3z Az

For 4, = 1:

w + 2z = w, which implies that z = 0

w + 3x = x, which rearranges tow = —2x

2x — y + 2z = y, which (with z = 0) rearrangesto x = y

3z = z, which is already solved by z = 0

-2
So, an eigenvector of T corresponding to 4; = 1 is any scalar multiple of 1
0
For 4, = —1:
w + 2z = —w, which rearranges to 2z = —2w, S0 z = —w

w + 3x = —x, which rearranges to w = —4x

2x —y + 2z = —y, which rearranges to 2x + 2z =0,S0z = —x = —w

3z = —z, which implies that z = 0, which further impliesthatz=x=w =0

This leaves y = y, so an eigenvector of T corresponding to 1, = —1 is any scalar
0

multiple of (1)

0

Finally, for A; = 3:

w + 2z = 3w, which rearrangesto z = w

w+ 3x = 3x,sow=z=0,and x = x

2x —y + 2z = 3y, which (with w = z = 0) rearranges to x = 2y

3z = 3z, which is already solved by z = 0.

0
So an eigenvector of T corresponding to A; = 3 is any scalar multiple of i
0
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Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

e Book a tutorial or join a workshop on the Study Development tutorial and workshop webpage
or search ‘YSJ study development tutorials.’

Access our Study Success resources on the Study Success webpage or search YSJ study

success.’
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