What is a basis?

(Informally) a basis of R^{n} is a set of vectors in R^{n} that you can make any vector in R^{n} out of by finding a linear combination of the basis vectors.

Checking if a set of vectors is a basis

When we are given a set of vectors and asked 'is this set of vectors a basis in S ?' we are being asked to check two things:

- Are the vectors linearly independent?
- Do they span S ?

If the answer to both is yes, then we have a basis for S.

Linear independence

A set of vectors being linearly independent means that we cannot form one of the vectors as a linear combination of the others. A linear combination of a set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ is $a_{1} v_{1}+$ $a_{2} v_{2}+\cdots+a_{n} v_{n}$ where $a_{1}, a_{2}, \ldots, a_{n}$ are scalars.
For example,
$\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}3 \\ -2 \\ 2\end{array}\right)$ are not linearly independent, since $\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)=3\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)-\left(\begin{array}{c}3 \\ -2 \\ 2\end{array}\right)$.
We can test for linear independence in a couple of different ways:

1. A set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent if the only solution to $a_{1} v_{1}+a_{2} v_{2}+$ $\cdots+a_{n} v_{n}=0$ is $a_{1}=a_{2}=\cdots=a_{n}=0$.
2. The determinant of a matrix is 0 if and only if the columns are linearly dependent.

To use this method, we write the vectors as the columns of a matrix and then find the determinant.

Spanning

When we say a set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ span S, we mean that we can find any vector v in S by writing it as $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=v$ for scalars $a_{1}, a_{2}, \ldots, a_{n}$.

There is a very useful result that ' n linearly independent vectors will span R^{n} ' so, if you are testing whether your vectors span R^{n}, and you have n linearly independent vectors, you know that they span R^{n}.

Showing we have a basis in one step

We may rewrite $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=v$ as $\left(\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right) V=v$, where V is a matrix whose columns are $v_{1}, v_{2}, \ldots, v_{n}$. If V is invertible, then $v_{1}, v_{2}, \ldots, v_{n}$ are a basis for R^{n}. The explanation of this is in the factsheet.

We also know that a matrix is invertible if and only if its determinant is not 0 .
Therefore, to show that we have a basis:
Write the vectors as the columns of a matrix, find the determinant. If the determinant is 0 , we do not have a basis. If the determinant is not 0 , we have a basis.

Finding a basis

Now that we know how to check if vectors are a basis, finding a basis is a pretty simple task. We know that we need to find the columns of an nxn matrix such that its determinant isn't zero.
For example, if we are asked to find a basis for R^{3} we can simply fill in the blanks of a 3×3 matrix.
Start by choosing any vector in R^{3}. We'll call this $v_{1}=\left(\begin{array}{l}v_{1,1} \\ v_{1,2} \\ v_{1,3}\end{array}\right)$ Then, choose a second vector in R^{3} -
as long as this isn't a scalar multiple of your first vector it will work. We write this as $v_{2}=\left(\begin{array}{l}v_{2,1} \\ v_{2,2} \\ v_{2,3}\end{array}\right)$.
Next, we write

$$
\left(\begin{array}{lll}
v_{1,1} & v_{2,1} & v_{3,1} \\
v_{1,2} & v_{2,2} & v_{3,2} \\
v_{1,3} & v_{2,3} & v_{3,3}
\end{array}\right)
$$

Library and Learning Services
Study Development

We then find the determinant and choose values for $v_{3,1}, v_{3,2}$ and $v_{3,3}$ such that the determinant is not 0 .

If we are finding a basis for R^{n} with $n>3$, we have to check for linear independence each time we add a new vector past the second vector added.
Hint: there are vectors that we sometimes call the 'standard basis vectors'. These are vectors that have only one non-zero entry that is 1 . These are usually the easiest way to find a basis. For example, for R^{3}, the 'standard basis vectors' are $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. If you are unsure, try selecting the first two basis vectors in this format, and it should make it much easier to find a third vector.

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the Study Development tutorial and workshop webpage or search 'YSJ study development tutorials.'
- Access our Study Success resources on the Study Success webpage or search 'YSJ study success.'

Library and Learning Services
Study Development

