The Law of Total Probability

Study Development Factsheet

The (discrete) Law of Total Probability (also called the Law of Alternatives) states that if events $\left\{B_{n}: n=1,2, \ldots\right\}$ are pairwise dijoint and their union covers the entire sample space, then

$$
P(A)=\sum_{n} P\left(A \cap B_{n}\right)=\sum_{n} P\left(A \mid B_{n}\right) P\left(B_{n}\right)
$$

(provided each B_{n} is measurable and A exists in the same probability space).

So, what does any of that mean? We'll break it down:

- Discrete: separate and distinct events. For example, the results of a dice roll are discrete, and the age of a tree is discrete. This is because we cannot subdivide these categories- for example, we can't get 3.5 on a dice roll. There is a fixed, non-infinite number of possible outcomes.

Something like the volume of water leaking from a ceiling would not be discrete, since it would take us literally forever to write out every possible volume of water we could measure. This is an example of a continuous variable.

- Events $\left\{B_{n}: n=1,2, \ldots\right\}$: this is a set of possible outcomes. If we think of the outcomes of rolling a 6 -sided dice as the events $\left\{B_{n}: n=1,2, \ldots\right\}$, then we have $B_{1}=1, B_{2}=2, B_{3}=3$, $B_{4}=4, B_{5}=5, B_{6}=6$.
- Pairwise disjoint: there is no possible way to have two different events in $\left\{B_{n}: n=1,2, \ldots\right\}$ happen at the same time. For example, if $\left\{B_{n}: n=1,2\right\}$ are the outcomes of tossing a coin one time, then we have $B_{1}=$ heads and $B_{2}=$ tails, so we cannot have B_{1} and B_{2} at the same time.
- Their union covers the entire sample space: $\left\{B_{n}: n=1,2, \ldots\right\}$ covers every possibility. If we were looking at the 6 -sided dice example, then we need to have an event B_{n} for each face of the dice. If we had, for example, $B_{1}=2, B_{2}=4$ and $B_{3}=6$ as the events $\left\{B_{n}: n=\right.$ $1,2,3\}$ then their union does not cover the entire sample space.
- B_{n} is measurable: don't worry too much about this. In mathematics, the concept of a nonmeasurable event is very abstract and requires a lot of further knowledge to define. Unless you have been told that an event B_{n} is nonmeasurable, in which case you cannot use the law of total probability, assume they are measurable.
- A exists in the same probability space: if we are, for example, talking about plants, and $\left\{B_{n}: n=1,2, \ldots\right\}$ is the different colours that the flowers can be, then A could be another plant property, such as the number of leaves the plant has.

Example

A gardener is planting three different kinds of bulbs. They have 25 large bulbs, 25 medium, and 25 small bulbs. The probability that a large bulb will produce a plant with red flowers is 0.75 , the probability that a medium bulb will produce a plant with red flowers is 0.6 , and the probability that the small bulbs will is 0.45 . The gardener chooses a bulb at random and plants one. What is the probability that the plant it produces will have red flowers? You may assume that the bulbs will always grow into a plant that flowers.

This is a huge chunk of information. We start by checking that we can actually use the law of total probability:
A bulb cannot be two different sizes at once, so the events $B_{1}=$ large bulb is chosen, $B_{2}=$ medium bulb is chosen, and $B_{3}=$ small bulb is chosen are pairwise disjoint.

The gardener choses a bag of bulbs at random from the three bags, so $\left\{B_{n}: n=1,2,3\right\}$ covers the entire sample space.
$\left\{B_{n}: n=1,2,3\right\}$ are discrete outcomes (for example, we can't have a bulb that is 'medium and a half').

Therefore, we can use the law of total probability.
We now put the information into a nicer format. We say that A is the event that the plant has red flowers, B_{1} is the bulb being large, B_{2} is the bulb being medium, and B_{3} is the bulb being small. We have:

$$
\begin{gathered}
P\left(B_{1}\right)=\frac{25}{75}=\frac{1}{3} \\
P\left(B_{2}\right)=\frac{1}{3} \\
P\left(B_{3}\right)=\frac{1}{3}
\end{gathered}
$$

We get this since there are 25 bulbs in each category, and 75 bulbs total, so each type of bulb has a probability of $\frac{25}{75}$ of being chosen at random.

We also have (from the information given):

$$
\begin{gathered}
P\left(A \mid B_{1}\right)=0.75 \\
P\left(A \mid B_{2}\right)=0.6 \\
P\left(A \mid B_{3}\right)=0.45
\end{gathered}
$$

We can now find $P(A)$ using the law of total probability:

$$
\begin{gathered}
P(A)=\sum_{n} P\left(A \mid B_{n}\right) P\left(B_{n}\right)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+P\left(A \mid B_{3}\right) P\left(B_{3}\right) \\
=0.75 \times \frac{1}{3}+0.6 \times \frac{1}{3}+0.45 \times \frac{1}{3}=0.6
\end{gathered}
$$

So, the probability that a bulb will produce a plant with red flowers is 0.6 .
Hopefully this has shown that, although the law itself looks quite complicated, actually using it isn't too confusing.

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the Study Development tutorial and workshop webpage or search 'YSJ study development tutorials.'
- Access our Study Success resources on the Study Success webpage or search 'YSJ study success.'

Library and Learning Services
Study Development

