A right-angle triangle is a triangle whose side lengths follow Pythagoras's Theorem and one of the internal angles is 90° (or $\frac{\pi}{2}$ radians).

- Hypotenuse: the longest side/ the side that is opposite the right angle. This term is only used for right angle triangles.
- Opposite side: the side that is opposite whichever angle we are interested in. When referring to right-angle triangles, we do not label the hypotenuse as an 'opposite' side.
- Adjacent side: one of the sides that meet to make the angle we are interested in. When referring to right-angle triangles, we do not label the hypotenuse as an 'adjacent' side.

Trigonometric ratios (SOHCAHTOA)

We can also deduce information about the angles in a right-angle triangle from their side lengths, and vice versa. We do this using the three trigonometric ratios:
$\sin (\theta)=\frac{\text { opposite }}{\text { hypotenuse }}$
$\cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan (\theta)=\frac{\text { opposite }}{\text { adjacent }}$
Each of these trigonometric functions has an 'inverse' (ie a function that you can apply to them to give you a value for θ). These are $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$, and are read as either 'sine to the minus one' or 'arc sine'. You can find these on a calculator (usually by pressing the shift key, and then the sin, cos or tan button).

Answering a right-angle trigonometry question

1. Identify the side lengths given.
2. Choose the ratio that combines those sides.
3. Calculate the angle or side using a calculator.

Support: Study Development offers workshops, short courses, 1 to 1 and small group tutorials.

- Join a tutorial or workshop on the Study Development tutorial and workshop webpage or search 'YSJ study development tutorials.'
- Access our Study Success resources on the Study Success webpage or search 'YSJ study success.'

Library and Learning Services
Study Development

